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The spherical Fourier expression is given in terms of surface spherical harmonics. The method is 
found to be useful for crystals with high symmetries. The formulae for Oh-m3m are discussed in 
detail and an application is shown for the case of cubic hexachloroethane. 

In troduct ion  

The use of spherical Patterson sections in structure 
analysis has been discussed by Mackay (1951). Semi- 
polar coordinates have also been employed in the 
Fourier synthesis (Lukesh, 1947). These authors trans- 
formed the Cartesian coordinates into polar or semi- 
polar ones without modifying the fundamental form 
of the conventional Fourier expression. In the present 
method, the Fourier series is expressed in terms of 
spherical harmonics rather than trigonometric func- 
tions. I t  can be applied to any space group, but is 
particularly useful for crystals with high symmetry. 
Another important feature of this method is its func- 
tional form, that  is, each term in the series is separ- 
able in polar coordinates. 

M e t h o d s  

Using the singular addition theorem of surface spher- 
ical harmonics, the electron density of the unit cell 
of a crystal can be expressed as follows: 

1 
~(r) = ~ "  F(h) exp ( - 2 ~ i h . r )  

1 
= ~ ~ F(h) exp ( - t a r  cos o~) 

co 

= l ~h n~oF(h)an jn (ar )Pn( -COSOg)  
V = 

(1) 

where V is the volume of the unit cell; F(h) = F(hkl), 
the structure factor; h, the reciprocal-lattice vector; 
r, the position vector in the real space (]r] = r); 

= 2Jr]hi = 4~r sin 0/~t; co, the angle between h and r;  
an = in(2n+l);  jn(ar) =: ]/(Tr/2ar)Jn+½(ar), the spher- 
ical Bessel function; Pn(cos o~) the nth order Legendre 
function. We utilize the addition theorem of the 
associated spherical harmonics of the first kind, 

Pn (cos o~) = P= (cos O)P~ (cos 0~) 
~ (n--m) I 

+ 2 " P~ (cos O)P~ (cos 0h) cos m(~-~h)  (2) 
-1 (n+m)! 

* Contr ibut ion  No. 622. Work  was performed in the  Ames 
L a b o r a t o r y  of the  U.S. Atomic E n e r g y  Commission. 

where Oh and ~h are the angular polar coordinates 
of h. By combining (1) and (2), we have the general 
form for Q(r) in the Legendre expression. 

Although the series (1) rapidly converges with 
respect to n, thc labor of computation is prohibitive 
without the aid of symmetry considerations. The 
symmetry operations of the spherical harmonics have 
been discussed by many authors (Bethe, 1929; yon 
der Lage & Bethe, 1947; Atoji & Lipscomb, 1954; 
Betts et aI., 1956). Consequently, the case for Oh--m3m 
is discussed here as an example. 

In Oh-m3m, the center of symmetry requires that  
n should be an even integer; the four-fold symmetry 
requires m to be multiples of four and an x, z mirror 
plane reduces cos m(q0-~h) to cos m~.cosm~h. The 
characteristic operations on the cubic spherical har- 
monics lead to 

o(r) = -~ F(000)+2_Y Cn(hkl, r)Yn(0~) , (3) 
n=0 

where (n.1) 

Cn(hkl, r) = .~, (-1)n(4n+ l)ph~zF(hkl) 
h>k>__l 

P2n h ]c 

+P2n (h2+-k2+l 2 . xfin(o~r), (4) 

where ph~ is the multiplicity factor and has the values, 
4 and S for (h~0} and {hkl}, respectively. Here Yn(0q)) 
is the 'Kubic Harmonic' (yon der Lage & Bethe, 194"/) 
and is expressed by 

m<_~n 
= K~ P2n (cos 0) cos4m~. (5) Yn(0~) P 2 n ( c o s  0) ÷ ~ m 4m 

The general form of K~ has been derived by the author 
and is given as 

• P2n (0) 4(2n_4m) T 4~ 
/(~ = (2Pgn(0)+ 1 }(2n +4m)! ' (6) 

where 

P2n(O) = ( -1 )  n (2n)! 
22n(n!) " 
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Fig. 1. The  spherical  section (r ---- 2.14 A) of the  e lect ron dens i ty  of cubic hexach loroe thane .  E a c h  con tour  line 
represents  a dens i ty  inc rement  of ½ e.A -3, the  one-electron line being broken.  

and 

wi th  

am (-1)~(2n + 4 m - l )  !! 
P2~ (0) = (n_2m)!  2~_2~ 

n![ = n ( n - 2 ) ( n - 4 ) .  . .2 or 1 . 

The values of (K~) -1 for (2n, 4 m ) a r e  (4, 4 ) =  168, 
(6, 4) = -360 ,  (8, 4) - 5940, (8, 8) = 3991680, (10, 4) 
= - 5 4 6 0 ,  (10, 8) = -23587200,  (12, 4) = 35664, 
(12, 8) = 449366400 and (12, 12) = 711796377600. Note 
tha t  Yn(0~0) = 0 if n = 1. Note also tha t  (3) can be 
extended to the Pat terson function for the crystals 
with the site-symmetries,  Oh, 0 and .Ta. 

A p p l i c a t i o n  

The numerical  tables for spherical Bessel functions 

(National Bureau of Standards, 1947) and {or Legendre 
functions (National Bureau of Standards, 1945; Be- 
lousov, 1956) are available. Therefore, the coefficient 
C,~(hkl, r) can be readi ly calculated for a given struc- 
ture. I t  is noted tha t  C,~(hkl, r) is separable in r. 
Therefore, the coefficients for the various radii  can 
be obtained by  changing only the radial  part .  The 
summat ion  is carried out on the independent  F(hkl) 
for each n, and then  Cn(hkl, r) is mult ipl ied by  
Y~(Oq~). The final summat ion  is carried out on n. 
The tables of Y,~(Oq~) for n = 2 to 6 have been pre- 

pared and are available upon request  to the author. 
The spherical electron densi ty  of cubic hexachloro- 

e thane (Atoji et al., 1953) has been computed by  this 
method.  Using a set of signs obtained from reasonable 
disorder models, ~(r) at  r = 2-14 A_ (the distance 
between the center of molecule to chlorine atoms) was 
computed and is shown in Fig. 1. The result ing electron 
densi ty shows the principal features of the h inder ing 
potential  as discussed previously. The computat ion of 
several spherical sections required only a few hours 
which would be considerable less than  deducing the 
spherical sections from the three-dimensional  Fourier  
maps  in the orthogonal coordinates. The convergency 
on n is most ly  dependent  on j2,~(ar) and is bet ter  for 
a smaller at. In  order to obtain a three place accuracy 
in the final result, C o to C 5 terms were necessary for 
r = 2.14 A, but  only three terms for r = 0.77 /~. 

If the Bragg-Hugglns masks for Y~(O~) are pre- 
pared, by exposing ]zn(Oq)) masks proportional to Cn 
on photographic paper, optically synthesized spherical 
maps  can be readily obtained. 

P r o j e c t i o n s  

The circular projection of Q (r) at a prospective distance 
m a y  be useful to locate a peak or to obtain the orienta- 
tion of a molecule in the uni t  cell. The projection with 
respect to 9 is 
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-- @(r)d~ @(r0) ~ 0 

_1 oo 

= V ~'~'o (cos Oh)Pn (cos 0) , (7) 

which is not a function of ~h. The weighted projection 
@(r~) is defined by 

f) @(r~) = ½ (r) sin OdO 

-- ,~ .~ ~ F(h)anjn(~xr) .2J .L~ cos m(~-~oh) , (8) 
Y h n = 0  t m = l  

where Ln m is a numerical constant. In the case of Oh, 
L~-values for (n, m) are" 

(4, 4) = 0.3333, 

(8, 4) = 0.044~4, 
(10, 4) = -0.07619, 
(12, 4) = 0.01682, 

(12, 12)=  0.1515. 

(6, 4) = - 0.4000, 
(8, 8) --- 0.2063, 

(10, 8) = -0.2159, 
(12, s) = 0.4140, 

By following the example given above, one can derive 
the results for other space groups. 
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Elimination of termination of series error in generalized projections can be achieved by use of 
(Fo--Fc) Fourier coefficients. Use of a particular kind of average is capable of minimizing the 
somewhat smaller errors in co-ordinates arising from inaccurately known temperature factors. 

I n t r o d u c t i o n  

Since the first use of generalized projections (Clews & 
Cochran, 1949; Hughes & Pfeiffer, 1949) the detailed 
theory (Cocbran & Dyer, 1952) has become useful in 
applications in which three-dimensional information is 
obtainable by use of computational methods normally 
used in two-dimensional studies. Of the numerous 
applications (Dyer (1951), Raeuchle & Rundle (1952), 
Zussman (1953), Curtis & Pasternak (1955), White & 
Clews (1956), Huber (1957), Bryden (1957), Shoe- 
maker, Shoemaker & Wilson (1957), Sutor (1958), 
Bryden (1958), Brunton, Steinfink & Beck (1958)) 
those of most interest here are: (a) the difference 
method (Zachariasen, 1954) to locate hydrogen atoms 
at specific levels in the unit cell; (b) the 'modulus 
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t Present address: Laboratorium fiir organische Chemie, 
Eidg. Technische Hochschule, Universit~tst.r. 6, Ztirich, Swit- 
zerland. 

projection' employed by Fridrichsons & Mathieson 
(1955), as well as by Philips (1956) to sharpen atoms 
viewed in projection by a suitable combination of the 
two possible generalized projections; (c) the proof 
(Speakman, 1953) of non-planarity of a nearly planar 
molecule; (d) an improved method to determine the 
shape of overcrowded molecules (Rossmann (1958), 
Trotter (1958)) and capable of demonstrating the 
slight, but unexpected, non-planarity in 2 : 3-8 : 9 
dibenzperylene (Robertson & Rossmann, 1958). Since 
it is by no means obvious that  the method of genera- 
lized projections could have been developed to the 
extent indicated by these latter examples, we have 
felt it desirable to report these recent improvements. 

R e d u c t i o n  of  s e r i e s - t e r m i n a t i o n  e r r o r  

We follow the notation of Cochran & Dyer (1952) 
who modify the ordinary electron density, e.g. @ (x, z) 
when K = 0, to give the generalized density, 
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